Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(23): e2200812, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35403353

RESUMO

Metal nanoparticles occupy an important position in electrocatalysis. Unfortunately, by using conventional synthetic methodology, it is a great challenge to realize the monodisperse composition/structure of metal nanoparticles at the atomic level, and to establish correlations between the catalytic properties and the structure of individual catalyst particles. For the study of well-defined nanocatalysts, great advances have been made for the successful synthesis of nanoparticles with atomic precision, notably ligand-passivated metal nanoclusters. Such well-defined metal nanoclusters have become a type of model catalyst and have shown great potential in catalysis research. In this review, the authors summarize the advances in the utilization of atomically precise metal nanoclusters for electrocatalysis. In particular, the factors (e.g., size, metal doping/alloying, ligand engineering, support materials as well as charge state of clusters) affecting selectivity and activity of catalysts are highlighted. The authors aim to provide insightful guidelines for the rational design of electrocatalysts with high performance and perspectives on potential challenges and opportunities in this emerging field.

2.
Stem Cells Int ; 2017: 4782820, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28883836

RESUMO

WISP1, as a member of the CCN4 protein family, has cell protective effects of promoting cell proliferation and inhibiting cell apoptosis. Although some studies have confirmed that WISP1 is concerned with colon cancer and lung cancer, there is little report about the influence of WISP1 in traumatic brain injury. Here, we found that the expression of WISP1 mRNA and protein decreased at 3 d and then increased at 5 d after traumatic brain injury (TBI). Meanwhile, immunofluorescence demonstrated that there was little colocation of WISP1 with GFAP, Iba1, and WISP1 colocalized with NeuN partly. WISP1 colocalized with LC3, but there was little of colocation about WISP1 with cleaved caspase-3. Subsequent study displayed that the expression of ß-catenin protein was identical to that of WISP1 after TBI. WISP1 was mainly located in cytoplasm of PC12 or SHSY5Y cells. Compared with the negative control group, WISP1 expression reduced obviously in SHSY5Y cells transfected with WISP1 si-RNA. CCK-8 assay showed that pyrroloquinoline quinone (PQQ) had little influence on viability of PC12 and SHSY5Y cells. These results suggested that WISP1 played a protective role after traumatic brain injury in rats, and this effect might be relative to autophagy caused by traumatic brain injury.

3.
CNS Neurol Disord Drug Targets ; 16(6): 724-736, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28124619

RESUMO

BACKGROUND: Pyrroloquinoline quinone is an anionic, water-soluble compound with antioxidant characteristic. The role of pyrroloquinoline quinone in pharmacology and nutrition has attracted wide attention of researchers. Although a few experiments have confirmed that pyrroloquinoline quinone plays an obvious effective role in neuroprotection. There are few reports about the effect of pyrroloquinoline quinone on traumatic brain injury. Traumatic brain injury is one of the leading causes for adult disability and death. So far, there are no effective treatment methods for the injury because of its complex pathophysiology. METHOD: In the present study, a model of traumatic brain injury in rat was established to study the role of pyrroloquinoline quinone in central nervous system injury. RESULTS: The results showed that the protein expression of cleaved-Caspase 3/Caspase 3 increased after traumatic brain injury and the expression decreased by treatment with 2mM pyrroloquinoline quinone. Terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) staining displayed that the TUNEL positive signals were up-regulated after traumatic brain injury and were down-regulated after treatment with 2mM pyrroloquinoline quinone. The protein expression of LC3II/LC3I or lysosome-associated membrane protein 2(LAMP2) was elevated after traumatic brain injury and reduced after administration with 2mM pyrroloquinoline quinone. Transmission electron microscopy showed that the number of autophagosomes increased markedly after traumatic brain injury and decreased on administration of 2mM pyrroloquinoline quinone. Electroencephalogram indicated that pyrroloquinoline quinone improved brain electrophysiological function after traumatic brain injury. The results of CCK-8 test showed that pyrroloquinoline quinone could increase the viability of primary astrocyte treated with Glutamate. Lactate dehydrogenase (LDH) assay demonstrated that pyrroloquinoline quinone decreased LDH content in primary astrocyte exposed to Glutamate. CONCLUSION: Pyrroloquinoline quinone could play a neuroprotective role after traumatic brain injury in rat, which might be associated with inhibiting apoptosis and autophagy caused by traumatic brain injury.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Fármacos Neuroprotetores/uso terapêutico , Cofator PQQ/uso terapêutico , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagossomos/patologia , Autofagossomos/ultraestrutura , Lesões Encefálicas Traumáticas/fisiopatologia , Caspase 3/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/toxicidade , L-Lactato Desidrogenase/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley , Sincalida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...